LMP 1210 - Basic principles of machine
learning 1n biomedical research

Rahul G. Krishnan
Canada CIFAR Al Chair

Tier II Canada Research Chair in
Computational Medicine



Announcements

Next week, we will start project presentations.

6 teams on March 28

. Youli project does not need to be 100% done, report what remains to be done for the upcoming
wee

7 teams on April 4
Fach team will have 15 minutes total — 12 minutes for presentation

Remember:
* Most of your grade is based on the presentation + project report.
» Reports will be graded by me and the TAs, presentations by me
Bring:
» A practiced presentation
e Laptop
« HDMI Adaptor



Grading rubric

* Scope of the project
* How much of the initial project proposal you have completed

* How well you present the core idea:
e What problem do you care about
* Why do you care about solving it?
e How did you solve it?
* When you implemented your method, what happened?

e What have you learned through doing the project?



Overview

* Limitations of supervised learning

* Self supervised learning

* [Time permitting: Transformers]

* Imaging in computational histopathology



Imaging in medicine

* History of Medical Imaging, Bradley et. al, 2008

* Nuclear medicine: Using radiation to see inside the human body
« X-ray discovered in 1895 (won the Nobel in 1901)
» CT, PET discovered thereafter

* Magnetic resonance imaging: Mapping resonance in the body to
Images

 Ultrasound imaging: Mapping high-frequency sound waves to
Images

* Histopathological imaging: Images of stained tissue samples



http://websites.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2008-09-procAmerPhilSoc_Bradley-MedicalImagingHistory.pdf
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Computer vision

* Computer vision has had a front row seat to the advances in

deep learning

Deng, Jia, et al. "Imagenet:
A large-scale hierarchical
image database." 2009
IEEE conference on
computer vision and
pattern recognition. leee,
20009.

IMAGENET

ImageNet Challenge

mite ___ container ship motor scooter leopard

| ] mite container ship motor scooter pard

[ | black widow lifeboat go-kart jaguar

. | cockroach amphibian moped cheetah

1 O O O O bJ e Ct Cl a S S e S | tick fireboat bumper car snow leopard
’ | starfish drilling platform golfcart Egyptian cat

(categories).
Images:

o 1.2 M train
o 100K test.

N Q1
Madagascar cat

vertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey




Error rates on Imagenet over time
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Neural networks in a slide

« Simplest neural network is a multi-layer perceptron

* Neural networks are known to be universal function
approximators




Convolutional neural networks

Capture the fact that we may want representations that are spatially invariant

Output [0][0] = (9*0) + (4*2) + (1*4) +
(1*1) + (1*%0) + (1*1) + (2*0) + (1*1)

. =0+8+1+4+1+0+1+0+1
~, =16

Input image Filter Output array



Deep residual neural networks
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Deep Residual Learning for Image Recognition, He et. al, 2015




Limitations of supervised learning

* Deep neural networks have proven very successful in learning
useful representations of image data from large datasets

* Models like AlexNet, ResNet trained on imagenet capture
features useful for multiple different tasks

* For a new task:
* Need fine-grained labels associated with each example
« Standard approach: Use a pre-trained imagenet model and fine-tune on
new dataset
* Self-supervised learning:
* What if we do not need labels to learn good representations?



Unsupervised learning
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Semi-supervised learning

3
0 = arg m@axZﬁ(x; 0) + L(y1|z1;02) + L(ys3|T3;02)

1=1

* Have a combination of labelled and un-labelled data in your
dataset




Unsupervised and semi-supervised learning
of high-dimensional images is hard

* Even if there is a small space of concepts unsupervised models
of image data are challenging to build

* Need a good model of each pixel in the image.

* Recently there has been a lot of work in leveraging generative
adversarial networks for this problem

* |dea: Can we build representations without labels and without
modeling each pixel as a random variable?



Self-supervised learning

* Recent (last 4-5 years) development in machine learning

* Principle: Leverage domain knowledge about what kinds of
information the representation should contain when building it

* Learn about self-supervised learning by examples



Notation

¢ * Feature function [Resnet]

_+ Transformation of an image
T :x—2x [random crop, rotation, jittering,
color normalization]
* Preserves the identity of the image

[ / ° u u n .
Slm(k, L ) Similarity funcfuo.n |
* Measure of similarity of two vectors

* Mean squared error, cosine
similarity



SSL 1 - Learning with contrastive examples

* A Simple Framework for Contrastive Learning of Visual
Representations, Chen et. al, ICML 2020

* Builds upon earlier work: Unsupervised Feature Exiraction by
Time-Contrastive Learning and Nonlinear ICA, Hyvarinen et. al



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/1605.06336.pdf
https://arxiv.org/pdf/1605.06336.pdf
https://arxiv.org/pdf/1605.06336.pdf
https://arxiv.org/pdf/1605.06336.pdf
https://arxiv.org/pdf/1605.06336.pdf

SIMCLR: Self-supervised learning with
contrastive examples
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How good are the representations?

A Simple Framework for Contrastive Learning of Visual Representations

Food CIFARIO CIFARI100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SImCLR (ours) 76.9 95.3 80.2 48.4 659 600 612 84.2 78.9 892 93.9 95.0
Supervised 75.2 95.7 81.2 564 649 688 638 83.8 78.7 923 94.1 042
Fine-tuned:

SimCLR (ours) 894 98.6 89.0 78.2 68.1 92.1 870 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 098.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 91.3 848 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets. for ResNet-50 (4 x ) models pretrained on ImageNet. Results not significantly worse than the best (p > (.05,
permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-5(0).



SSL - Learning without contrastive
examples

* In the above examples, the quality of representations will
depend on the choice of negative examples used.

* Can we learn without negative examples?

* DINO: Emerging Properties in Self-Supervised Vision
Transformers, Caron et. al, 2021

* Key idea: Instead of comparing the representations with respect to
random negative examples, compare the representation to a different
crop of itself



https://arxiv.org/pdf/2104.14294.pdf
https://arxiv.org/pdf/2104.14294.pdf

DINO



Decision making with images

* Ultrasound:

* Echocardiograms
 Visualize beating of the heart to assess normal function

* Abdominal ultrasounds
* Assess healthy function of abdominal organs

* X-rays:
* Breast cancer screening

» Guiding surgery to remove blood clots, insert catheters
* Friday: Hear from Ruizhi Liao on combining text and chest x-ray data



Technical issues in machine learning for
medical imaging

* The general setup is almost always as follows:
* Collect a large set of images [X]
* Use notes/clinical variables/expert annotation to come up with labels [Y]
* Use a deep learning model predict Y from X

 Fairness:

* Reading Race: Al Recognises Patient's Racial Identity In Medical
Images, Banerjee et. al, 2021

* Selection bias:
» Causality matters in medical imaging, Castro et. al, 2019



https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/2107.10356
https://arxiv.org/abs/1912.08142

Case study 1: Deep learning for
echocardiograms

* Sound waves to image the heart
* Why:

* Check for problems with your valves or
chambers

* Check if heart problems are causing
shortness of breath

» Assess congenital heart defects




A taxonomy of echocardiograms

* Most common: Transthoracic echocardiogram

* Transesophageal echocardiogram
* Transducer guided down patient’s throat

* Records sound waves bouncing off the heart pumping and interprets
them as images

* Doppler echocardiogram
 Used to assess bloodflow

» Stress echocardiogram
* Ultrasound after excercise



Case study 1: Predicting cardiac
amyloidosis

* Artificial intelligence-enabled fully automated detection of
cardiac amyloidosis using electrocardiograms and
echocardiograms, Goto et. Al, Nature Communications, 2021

* Cardiac amyloidosis
* deposition of protein in the heart muscle, can result in heart failure
* believed to be rare but likely underdiagnosed

* manifests in both ECGs and echo-cardiography but features are not
highly specific and difficult to spot

* Gold standard: biopsy (costly and risky to patient)



Where machine learning can help

* How can we design a method that:
* Fits into the clinical workflow for cardiac patients
* |f used, improve underdiagnosis of disease?

* Key-idea: Two-stage approach

» Step 1: Build ML models from ECG data (readily available at most care
providers)
* Finding: Models have decent accuracy but not enough for conclusive diagnosis

» Step 2: Build ML models from echocardiogram data
* Finding: Models outperform human experts

* Use step 1 to decide which patients should undergo an echocardiogram
and apply model from step 2



A multi-center study

Table 1 Study-level demographic information (ECG cohort).

BWH MGH UCSF
Case Control Case Control Case Control
Number of studies 2249 8684 405 437 372 731
Age, years = SD 699+104 6232132 72990 73.8+88 67.7+£129 67517
Age Groups
<30, n (%) 2 (0.1) 97 (L1 1(0.2) 1(0.2) 2(05) 0 (0.0)
30-50, n (%) 78 (3.5) 1,370 (15.8) 707 6 (1.4) 36 (9.7) 69 (9,4))
50-70, n (%) 901 (40.1) 4548 (52.4) 143 (35.3) 135 (30.9) 136 (36.6) 278 (38.0)
70-90, n (%) 1242 (55.2) 2606 (30.0) 254 (62.7) 295 (67.5) 198 (53.2) 384 (52.5)
>90, n (%) 26 (1.2) 63 (0.7) 0 (0.0) 0(0.0) 0 (0.0) 0 (0.0)
HR, bpm £ SD 76.4+£16.7 759x185 786+16.6 751+198 79.6 £18.7 722+16.3
Sinus rhythm, n (%) 1,736 (77.2) 8,072 (93.0) 283 (69.9) 371(84.9) 365 (98.1) 729 (99.7)

HR heart rate, BWH Brigham and Women's Hospital, MGH Massachusetts General Hospital, UCSF University of Caldornia San Francisco. N represents the number of studies,




True positive fraction

Step 1: ECG model

Results Ok but not considered good enough for evaluating

interventions for a rare diagnosis since it will result in a large

number of false positives 3
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Step 2: Echocardiogram model

* Performance significantly better when using a richer (but more
expensive) data modality
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Recall: Metrics

» Positive Predictive Value (PPV): TP/(TP+FP)
* A high PPV will indicate that a positive result is likely correct

* Sensitivity: TP/(TP+FN)
* A highly sensitive test will have few-false negatives



Analyzing the combined approach

* ECG model:
* MGH: PPV 3.9% with Sensitivity 71%
* BWH: PPV 3.4% with Sensitivity 52.4%

 Echo model:
« MGH: PPV 32.7% with Sensitivity 66.9%
« BWH: PPV: 33.4% with Sensitivity 67%

 Combined:
» MGH: PPV: 76.6% with Sensitivity 47.5%
» BWH: PPV: 73.9% with Sensitivity 34.8%



Transformers

* Built on the attention mechanism

« Many modern tools with deep learning are based off the
transformer architecture (ChatGPT, Claude, Vision Transformers,
OpenAl Whisper)

* General purpose neural network that works well on images,
speech, text....

* Resources:
« Roger and Jimmy Ba’s lecture notes
* https://nlp.seas.harvard.edu/2018/04/03/attention.html
« https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/



https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/

Case study 2: Deep learning for
histopathological image data

» Scaling Vision Transformers to Gigapixel
Images via Hierarchical Self-Supervised
Learning, Chen et. al, CVPR 2022



https://openaccess.thecvf.com/content/CVPR2022/html/Chen_Scaling_Vision_Transformers_to_Gigapixel_Images_via_Hierarchical_Self-Supervised_Learning_CVPR_2022_paper.html?trk=public_post_comment-text
https://openaccess.thecvf.com/content/CVPR2022/html/Chen_Scaling_Vision_Transformers_to_Gigapixel_Images_via_Hierarchical_Self-Supervised_Learning_CVPR_2022_paper.html?trk=public_post_comment-text
https://openaccess.thecvf.com/content/CVPR2022/html/Chen_Scaling_Vision_Transformers_to_Gigapixel_Images_via_Hierarchical_Self-Supervised_Learning_CVPR_2022_paper.html?trk=public_post_comment-text

Histopathological images in the clinical
workflow

* Histopathology: Microscopic examination of tissue to study
diseases and their different presentations,

* Pipeline:
» Surgery, biopsy or autopsy for excision of tissue
* Placed in a fixative to stabilize tissue
* Investigated under a microscope

* Histopathological images are routinely used for clinical
diagnoses of cancer

* Key question: How can we use machine learning to build
representations of histopathological image data?



Slide-Level Supervised Learning (Weak Supervision)
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Lipkova ez al. 2021, In Review



Weakly-Supervised Learning: Finding Needles in Haystacks via Attention
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« Attention weights saliently
localize tumor regions in
binary classification tasks
of benign / metastasis

Lu ez al. 2021, Nature BME



Current Paradigm is limited by: Clinical Domain Knowledge

« Requires clinical domain knowledge to: N 2 N N
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Current Paradigm is limited by: Clinical Domain Knowledge
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Current pipelines for creating representations of whole slide images make use of ResNet50

architectures pretrained on imagenet.




Self-Supervised Learning: Pixel-Level Annotations are Not Needed!
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Lipkova ez al. 2021, In Review, Ciga et. al

We build upon recent work [Resource and data efficient self supervised learning, Ciga et. al, 2021] who
show that self-supervision yields general purpose
representations of histopathological images




DINO-based Knowledge Distillation for Patch-based Representations

Loss Function: p1log (p2) DINO
p1 p2 « We wanted to study the use of non-contrastive self-supervised learning for
T Stop Gradient creating representations
[ Softmax ] [ Softmax ] ) InpUt: . .
! : « Two crops with color contrasts from the same image
 CEIIII) | Exponential | e « Goal of self-supervised learning:

T t 1t ¢ T ' Moving
'| T |] Average E[

e Teach the network that these two crops are from the same image
e Output of student network is trained to match the distribution of
teacher network via minimizing cross-entropy loss
Avoid network collapse by having two networks
e Train the student via gradient descent
e Teacher is not trained, weights are updated via exponential
moving average from students
« Does not require negative samples
« Data inductive biases in natural images may not hold in H&E pathology
slides

H&E Image PatchX
Chen ¢t al. 2021, Tn Preparation DINO: Emerging properties in self-supervised vision transformers, Caron et. Al,



DINO-based Knowledge Distillation for Patch-based Representations

Loss Function: p1 log (02) DINO
p1 p2 « Output of student network is trained to match the
T , distribution of teacher network via:
Stop Gradient R . . e e .
/ Vision Transformer (ViT) Block « minimizing cross-entropy loss

N x Transformer Blocks

m « EMA to update teacher network

’ Does not require negative samples
[ « Data inductive biases in natural images may
not hold in H&E pathology slides

Vision Transformer (ViT) used as encoder

e 256 x 256 H&E tissue patches are further
patched as 16 x 16 patch embeddings

Per-patch FC
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Chen et al. 2021, In Preparation



Study Design

Small-cell lung cancer (15%)

Usually seen in cells near the
bronchi, small-cell lung cancer is
almost always caused by smoking
and is very aggressive. Only 6% of US
patients with small-cell lung cancer
survive five years after diagnosis,
compared with 21% of those with
non-small-cell lung cancer.

®a M P @,
Eoa L Y
& G..' g e.."".
e{.:'-.‘:..

l’, se AR Y

® Adenocarcinoma (40%)

This is the most prevalent

form of lung cancer and

usually arises in the cells °
lining the alveoli. It is a

common form of lung cancer

.. '. o""k— This type of cancer

smokers.

® Large cell
carcinoma (15%)

can begin in any
part of the lung,
and often grows
and spreads quickly.

in people who have never
smoked, but is also seen in

® Squamous cell
carcinoma (30%)

These tumours appear
in the flat cells that line
the inside of the
airways, usually near
the bronchi. This form
of the disease is
usually caused by
smoking and is more
common in men than
women. The tumours
tend to grow slowly.

Experiments:

Organ-specific vs. pan-cancer training
e TCGA Lung (1033 WSIs) vs
Entire TCGA (~8788 WSIs)
Comparisons with SOTA methods
e SimCLR, SimSiam

Slide-Level Tasks:

LUAD vs. LUSC Subtyping
LUAD + LUSC Survival Analysis
TP53 + KRAS Mutation Prediction



Results [1]: TCGA Lung Subtyping (LUAD vs. LUSC)

Lung Adenocarcinoma (LUAD)

35um |

Model Architecture  Training Source  Epochs  100% 75% 50% 25%

Method

ImageNet Transfer ~ResNet-50 ImageNet 100  0.945 +0.018 0.943 +£0.019 0.917 +0.024 § 0.888 + 0.031
SimCLR ResNet-50 Lung Only 100  0.950 +0.026 0.947 £0.017 0.934 + 0.025 § 0.897 £+ 0.028
SimSiam ResNet-50 Lung Only 100  0.952 +0.017 0.944 £0.018 0.935 £+ 0.026 § 0.897 4+ 0.029
DINO ViT Lung Only 100 0948 +0.021 0.942 £0.019 0.937 £ 0.021 § 0.928 4+ 0.024
SimCLR ResNet-50 Pan-Cancer 100  0.951 £0.016 0.948 +0.017 0.930 4+ 0.023 § 0.898 + 0.026
SimSiam ResNet-50 Pan-Cancer 100  0.493 +0.085 0.534 +0.072 0.508 4+ 0.085 § 0.603 + 0.040
DINO ViT Pan-Cancer 100  0.957 +0.019 0.949 £ 0.019 0.941 + 0.022 § 0.931 + 0.024

« Self-supervised feature extractors from DINO are more data-efficient than pretrained ResNet-50 on ImageNet for subtyping



Results [2]: TCGA Lung Subtyping (LUAD vs. LUSC) + Mutation Prediction (TP53 +

KRAS)

Lung Adenocarcinoma (LUAD)

35um

Model Architecture  Training Source  Epochs  100% 75% 50% 25% TP53 KRAS

Method

ImageNet Transfer ~ResNet-50 ImageNet 100 0945 +0.018 0.943 £0.019 0917 +0.024 0.888 +0.031 0.756 + 0.053 0.761 + 0.073
SimCLR ResNet-50 Lung Only 100 0.950 +0.026 0.947 £0.017 0.934 £0.025 0.897 +0.028 0.694 £0.073  0.737 £ 0.044
SimSiam ResNet-50 Lung Only 100  0.952 +0.017 0.944 £0.018 0.935+0.026 0.897 +0.029 0.698 £ 0.084 0.681 + 0.117
DINO ViT Lung Only 100 0948 +0.021 0.942 £0.019 0937 £0.021 0.928 +0.024 0.751 £0.041  0.771 + 0.059
SimCLR ResNet-50 Pan-Cancer 100  0.951 £0.016 0.948 £0.017 0.930 +0.023 0.898 £+ 0.026 0.687 + 0.100 0.711 + 0.127
SimSiam ResNet-50 Pan-Cancer 100 0.493 +0.085 0.534 +0.072 0.508 + 0.085 0.603 4+ 0.040 0.516 £ 0.073 0.612 4+ 0.051
DINO ViT Pan-Cancer 100 0.957 £ 0.019 0.949 £ 0.019 0.941 + 0.022 0.931 £+ 0.024 0.746 + 0.051  0.740 &+ 0.052

« Self-supervised feature extractors from DINO are more data-efficient than pretrained ResNet-50 on ImageNet for subtyping

« No difference found in gene mutation prediction




Results [3]: DINO Attentions to Cellular Identities

Attention Head #1: Attention Head #2: Attention Head #3: Ground Truth
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Questions?



