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Quick check in…

• Assignment 1 is due next week.  

• Start early!

• Ask questions! 


• Start thinking about your final project.

• Form groups of 2-3

• Think about interesting research ideas and look for datasets online

• More details to come next week! 



• So far, we’ve talked about algorithms/procedures for learning: KNN, decision trees

• For the remainder of this course, we’ll take a more modular approach: 

• choose a model describing the relationships between variables of interest

• define a loss function quantifying how bad is the fit to the data 

• choose a regularizer saying how much we prefer different candidate explanations

• fit the model that minimizes the loss function and satisfies the constrain imposed by 

the regularizer, possibly using an optimization algorithm 
• By mixing and matching these modular components, your ML skills become 

combinatorially more powerful!

Recap



Linear models
Problem setup

Recall that in supervised learning:


• There is target (also called response, outcome, output, class)


• There are features  (also called inputs or covariates)


• The objective is to learn a function  such that: 


• based on some data 

t ∈ 𝒯
x ∈ 𝒳

f : 𝒳 → 𝒯 t ≈ y = f(x)
𝒟 = {(x(i), t(i)) for i = 1,2,…, N}



Linear models
Linear regression

In linear regression, we use a linear function of the inputs to make prediction of the target:


f = f(x) = ∑
j

wjxj + b

•  is the prediction


•  is the weights


•  is the bias (or intercept) — don’t confuse it with bias/
variance that comes later


•  together are the parameters

• Our goal is to make predictions that are as close to the 

target 

y
w
b

w, b

y ≈ t



Linear models
Linear regression

If we have only 1 feature:


•  where 


•  is linear in 

y = wx + b w, x, b ∈ ℝ
y x

If we have D feature:


•  where , 


•  is linear in 

y = wTx + b w, x ∈ ℝD d ∈ ℝ
y x

Relationship between input and output is linear in both cases!



Linear models
Linear regression

We have a dataset  where:


 are the inputs, e.g. age, education, ….


 is the target or response, e.g. income.


Predict  with a linear function of .

𝒟 = {(xi, t(i)) for i = 1,2,…, N}
x(i) = (x(i)

1 , x(i)
2 , …, x(i)

D )T ∈ ℝD

t(i) ∈ ℝ
t(i) x(i)

Find the best line that minimizes error on sum of 
all errors!



Linear models
Quantify the quality of fit

Loss function  measures how bad it is if a model predicts  for a sample with label ℒ(y, t) y t

Examples: 


Squared error:  

Absolute error: 

ℒ(y, t) = (y − t)2

ℒ(y, t) = |y − t |

 is the residual, and we want to make 
this small in magnitude 
y − t

Note: There are many different loss functions that can be used and they each have different 
behaviours. 



Linear models
Cost function vs. loss function

Cost function: Loss function averaged over all training samples. 

It is also referred to Empirical loss, average loss, …

The terminology is not universal .

ℒ(y, t) =
1

2N

N

∑
i=0

(y(i) − t(i))2

 is for computational convenience. 

You will see later!

1
2



Linear models
Vectorization

We organize all training samples as a matrix where each row represents one training sample.

We organize all training targets as a Vector, with each sample as one dimension

X =
x(1)T

x(2)T

x(3)T
=

8 0 3 0
6 −1 5 3
2 5 −2 1

one training sample

one feature across 

all training samples

y = [
0.2
4
0 ]



Linear models
Vectorization

We can compute the prediction for the whole dataset by matrix multiplication

Xw + b =
x(1)Tw + b...
x(N)Tw + b

=
y(1)

...
y(N)

= y

We can compute the squared error loss on all samples as:

w =

w1
w2
w3
w4

=

0.2
1

0.5
1



Linear models
Vectorization

We can also add a column of 1s to the data matrix, and combine  with . How?b w

w =

w1
w2
w3
w4

X =
x(1)T

x(2)T

x(3)T
=

8 0 3 0
6 −1 5 3
2 5 −2 1

X =
1 8 0 3 0
1 6 −1 5 3
1 2 5 −2 1

w =

b
w1
w2
w3
w4



Linear models
Vectorization

Why Vectorization? 

• Because for loops are very slow in Python!

• The equations, and the code, will be simpler and more readable.

• Gets rid of dummy variables/indices!

• Vectorized code is much faster

• Cut down on Python interpreter overhead

• Use highly optimized linear algebra libraries

• Matrix multiplication is very fast on a Graphics Processing Unit 

(GPU)


•



Linear models
Optimization

• We defined a cost function that we’d like to minimize.

• Recall from calculus class: minimum of a smooth function 

(if it exists) occurs at a critical point, i.e. point where the 
derivative is zero. 


• Multivariate generalization: partial derivatives must be zero.

• We would like to find a point where the gradient is (close to) zero. How?

• Sometimes it is possible to directly find the parameters that make a gradient zero in a 

closed-form. We call this direct solution.

• We may also use optimization techniques that iteratively get us closer to the solution.



Linear models
Optimization

• Partial derivatives: derivatives of a multivariate function with respect to one of its 
arguments.

• To compute, take the single variable derivatives, pretending the other arguments 
are constant.


• Example: partial derivatives of the prediction y



Linear models
Optimization

• Chain rule for derivatives 

y = ∑

j

wjxj + b

ℒ =
1
2

(y − t)2

• Cost derivatives (Averaged over all samples)

Remember the  that was for 

computational convenience!

1
2



If                       you could reduce the cost by changing . This turns out to give a system of 
linear equations, which we can solve efficiently. Full derivation in the readings.


wj

Linear models
Optimization

The minimum must occur at a point where the partial derivatives are zero.

Optimal weights: (XTX)−1XTt

Note: Linear regression is one of only a handful of models in this course that permit 
direct solution.



Gradient descend
Optimization

• Now let’s see a second way to minimize the cost 
function which is more broadly applicable: gradient 
descent. 


• Gradient descent is an iterative algorithm, which 
means we apply an update repeatedly until some 
criterion is met. 


• We initialize the weights to something reasonable 
(e.g. all zeros) and repeatedly adjust them in the 
direction of steepest descent.

ℒ
(w

1,
w 2

)

w1 w1



Gradient descend
Optimization

 is the learning rate. The larger it is, the faster  changes.

We will see later how to tune the learning rate, but the values typically are small, e.g. 0.01, 
0.0001, …

α w



Gradient descend
Optimization

The gradient is the direction of fastest increase in the loss.

Update rule in vector form:

Hence, gradient descent updates the weights in the direction of fastest decrease.



Gradient descend
Optimization

ℒ(w1, w2)

w1

w2



Gradient descend
Optimization

• Why gradient descent, if we can find the optimum directly? 

• GD can be applied to a much broader set of models 

• GD can be easier to implement than direct solutions, especially with automatic 

differentiation software 

• For regression in high-dimensional spaces, GD is more efficient than direct solution 

( ). Why?


• Matrix inversion is an  algorithm


• Each GD update costs 

(XTX)−1XTt
𝒪(D3)

𝒪(ND)



Gradient descend
Optimization

• In gradient descend, the learning rate  is a hyper-parameter that needs to be tuned. 
Here are some of the ways things can go:

α

• To find the optimal value, use the validation set to perform a grid search.
https://www.mygreatlearning.com/blog/gradient-descent/



Gradient descend
Optimization

• To diagnose optimization, it is very helpful to look at the training curves: Training cost 
as a function of number of iterations. 

• It is very hard to tell from the training curves whether an optimizer has converged. 
These plots can reveal big problems, but can’t guarantee convergence.  



One option: fit a degree-M polynomial; this is known as polynomial regression

Linear models
Feature mapping

Let’s go back to our linear regression problem.

Suppose we want to model the following data:

Do we need to derive a whole new algorithm?

y = w0 + w1x + w2x2 + ⋯ + wMxM =
M

∑
i=0

wjxi



Polynomial regression model:

Linear models
Feature mapping

We get polynomial regression for free by mapping the input features to another space using 
feature mapping. 

All of the derivations and algorithms so far in this lecture remain exactly the same!

We can still use least square to find  since  is linear in .w y = wTψ(x) w

Let’s define a feature map as:

y = wTψ(x)

In general  can be any function, e.g. ψ
ψ = [1, sin(2πx), cos(2πx), sin(4πx), cos(4πx)]T

ψ(x) =

1
x
x2

x3



Linear models
Feature mapping

Pattern Recognition and Machine Learning, Christopher Bishop



Linear models
Feature mapping

Pattern Recognition and Machine Learning, Christopher Bishop



Linear models
Feature mapping

Pattern Recognition and Machine Learning, Christopher Bishop



Linear models
Feature mapping

Underfitting : model is too simple — 
does not fit the data.

Overfitting : model is too complex — 
fits perfectly, does not generalize.



Linear models
Feature mapping

Training and test error as a function of #parameters:



Linear models
Model selection

• The degree of the polynomial is a hyperparameter, just like k in KNN. We can tune it 
using a validation set. 


• Restricting the parameters of the model (M in this case) is a crude solution to 
controlling complexity.


• A better solution is to keep the model large, but enforce a simpler solution.

• This is done through regularization or penalization 
• How?



Break
10 minutes 



Linear models
Regularization

• A regularizer is a function that quantifies how much we prefer one hypothesis vs. 
another, encouraging a simpler solution.


• E.g. We can encourage the weights to be small by choosing as our regularizer the 
penalty ( -norm).

L2

ℓ2

• The regularized cost function makes a tradeoff between fit to the data and the norm 
of the weights.

a hyperparameter that we can 
tune using a validation set



Linear models
Regularization

• The idea is that simpler functions have smaller  norm of their weight.

• E.g. polynomials that overfit often have large coefficients.

L2



Linear models
Regularization for linear regression

• The least square loss for linear regression is:

• This makes the closed for solution:

• With , the regularize loss is:λ > 0



Linear models
Regularization

• The -norm or sum of absolute values is another regularizer that encourages weights 
to be exactly zero. What do you think is the different behaviour?

ℓ1

• We can design regularizers based on whatever property we’d like to encourage!



Linear models
Conclusion

• Linear regression exemplifies recurring themes of this course:

• choose a model describing the relationships between variables of interest 

• define a loss function quantifying how bad is the fit to the data 

• choose a regularizer saying how much we prefer different candidate explanations

• fit the model that minimizes the loss function using an optimization algorithm 

•Optimization can be done through closed-form solution or gradient descend. 

•Linear models can be made more powerful using feature mapping.

•Generalization can be improved by adding regularization.

•Next lecture: 

•Neural networks!




Tutorial 

• Introduction to Python (continued)

• Evaluation metrics

Colab


