
Sana Tonekaboni

LMP 1210H: Basic Principles of Machine
Learning in Biomedical Research

Lecture 4: Neural networks

February 1, 2024

Quick check in…

• Assignment 1 is due today.

• Assignment 2 will be released today.

• Project handout is now available on the course webpage.

• Linear models for regression.

• Loss function to quantify the quality of fit in a model.

• Regularization techniques to avoid overfitting.

• Optimization and gradient descent.

Recap

f(x) = ∑
j

wjxj + b

ℒ(w1, w2)

w1

w2

• Classification: predicting a discrete-valued target.

• Binary classification: predicting a binary-valued target

• Training examples with are called positive examples, and training examples with

 are called negative examples.

• Examples: predict whether a patient has a disease, given the presence or absence of

various symptoms.

• Linear: model is a linear function of , followed by a threshold:

t ∈ {0,1}
t = 1

t = 0

x

Classification
Binary linear classification

Simplification

• Seemingly obvious loss function:

• The cost function will be the average loss over all samples, which is equivalent to error
rate in binary cases.

Binary classification
Loss function

• But we can’t optimize classification accuracy directly using gradient descent because it
is discontinuous.

• We typically define a continuous surrogate loss function which is easier to optimize.

• Logistic regression is a canonical example of this in a classification setting.

• The model outputs a continuous value which you can think of as the

probability of a sample being positive.
y ∈ [0,1]

Classification
Logistic regression

• There is no reason to predict values outside . Let’s squash into this interval then.

• The logistic function is a kind of Sigmoidal or S-shaped function:

[0,1] y

Logistic regression

• Used in this way, σ is called an activation
function, and z is called the logit.

Logistic function

• Can we use one of the losses that we knew for regression? What is the problem?

Logistic regression

• Loss functions like MSE and MAE saturate at the extremes, meaning small gradient!

Loss function

• Because y ∈ [0, 1], we can interpret it as the estimated probability that t = 1.

• What loss function do we define? What are some properties that we are interested in?

• Example: A model that predicts with 99% confidence that a healthy patient is in risk of

cancer is much more wrong than the one that predicts 80% confidence.

Logistic regression
Loss function

• Cross-entropy loss captures this intuition:

• Logistic regression combines the logistic activation function
with a cross-entropy loss.

Logistic regression

• Interestingly, the loss asymptotes to a linear function of
the logit . (full derivation in the readings)z

Linear Regression vs Logistic Regression

Mostly used for continuous
regression

Loss function: Squared error

Optimization: Gradient descend or
closed form

Output is linear in inputs

Mostly used for binary classification

Loss function: Cross entropy

Optimization: Gradient descend

Output is not linear in inputs

Linear classification
Limitations

• Linear classifiers are very limited in expressive power.

• XOR is a classic example of a simple
function that is not linearly separable.

• Sometime we can overcome this limitation using feature maps.

• This is now linearly separable.

• But this cannot be a general solution. Why?

• Hard to know the right mapping!

Linear classification
Limitations

Neural networks
How can we model more complex functions?

Idea of neural networks inspired from human brain.

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

Neural networks (Multilayer Perceptron)
Perceptron

y = a(
d

∑
j

wjxj)

x1

x2

xd

.

.

.

∑ y

Inputs

Weights
Sum

Non-linear
activation function

Output

w0

w1

wd

Perceptron

x1

x2

xd

.

.

.

1

∑ y y = a(
d

∑
j

wjxj + b)

Inputs

Weights
Sum

Non-linear
activation function

Output

w0

w1

wd

b

Neural networks (Multilayer Perceptron)

Perceptron

How to build more complicated functions using this perceptron?

z = b +
d

∑
j

wjxj

y = a(z)

x1

x2

xd

.

.

.

z y

Neural networks (Multilayer Perceptron)

x1

x2

xd

.

.

.

1

∑ y

Sum Output

w0

w1

wd

b

Multilayer Perceptron
Multi output perceptron

x1

x2

xd

z y1 = a(z1)

z y0 = a(z0)

Because all inputs are connected to all outputs, these layers are called Dense layers.

y0

y1

Multilayer Perceptron
Single layer neural network

x1

x2

xd

z2

z1

z3

z4

y1

y2

• Typically units are grouped together in layers and
we can stack these layers to model more complex
functions

• A multilayer networks is called a multilayer
perceptron

MLP components

• Weight: the value of each synaptic connection
between neurons.

• Training a network is equivalent to learning the
weights.

• Notation:

• The weight matrix of level :

• The weight connecting neuron of layer to
neuron of layer :

k θ(k)

ith k jth

k + 1 θ(k)
ij

Weights
Depth

Multilayer Perceptron

• Each layer connects N inputs to M outputs.

• When all inputs are connected to the outputs, we call it a fully connected layer. The weight

connecting the layer matrix is .

• Note: Input and output of each layer are distinct from the input/output of the network

M × N

Layers

MLP components

• Goal: Given , estimate

• propagate through weights layer by layer (forward pass)

x y
x

Forward propagation

MLP components

Estimate the value of the neurons

Example (Forward pass)

x1 = 1

x2 = 3

1

2

2

-1

zj = ∑
j

θ(m−1)
ij xi

MLP components

Estimate the value of the neurons

Note: These are the pre activation values!

x1 = 1

x2 = 3

7

-1

1

2

2

-1

Example (Forward pass)

Break
10 minutes

MLP components

• Successive weight matrices multiplied by the input would just be a linear transformation.

• How can we model non-linear decision boundaries?

Activation functions

MLP components

• To learn non-linearly separable mappings we
need the non-linear activation functions.

• Non-linear activation functions introduce non-
linearity while allowing us to use gradients for
optimizing the weight values.

Activation functions

MLP components
Some activation functions

MLP components
Some activation functions

MLP components
Activation functions

Sigmoid

Used commonly for cases where the value should be
scaled between 0-1.

Used to be, but is no longer the “go to” activation.

1
1 + e−x

Problems:

• Vanishing gradients: gradients are small, and when multiplied for all layers, they

become very close to zero.

• Gradient of smaller and larger values approach zero, which means no updates to

those weights.

MLP components
Activation functions

Rectified Linear Unit (ReLU)

Works well empirically, so it has become the “go to”
activation in many applications

More discriminatory power as values are no longer restricted

Fixes the vanishing gradient problem of Sigmoids

max{0,x}

Leaky ReLU
Designed to prevent the dying ReLU problem

Problem: Dying ReLU problem —> When the unit
always output zeros for all inputs.

MLP components

• Apply an activation function on each output

• Notation: the activation value of the j-th neuron in layer m is

• Intuition: Whether a neuron fires or not, and the magnitude of its activation value is useful in
piecing together useful information for accomplishing the task. (unhelpful features should
be zeroed out by the activation function)

a(x) z(m)
j

a(m)
j

Forward propagation activation function

zj = ∑
j

θ(m−1)
ij xi a(m)

j = a(z(m)
j) = a(∑

j

θ(m−1)
ij xi)

MLP components
Example

zj = ∑
j

θ(m−1)
ij xi

a(m)
j = a(z(m)

j) = a(∑
j

θ(m−1)
ij xi)

Estimate the value of the neurons post activation (ReLU/sigmoid)

x1 = 1

x2 = 3

7

-1

1

2

2

-1

MLP components
Example

Estimate the value of the neurons post activation: ReLU

x1 = 1

x2 = 3

7

-1

1

2

2

-1

7

0

ReLU(7)

ReLU(-1)

MLP components
Example

Estimate the value of the neurons post activation: sigmoid

x1 = 1

x2 = 3

7

-1

1

2

2

-1

0.99

0.26

sigmoid(7)

sigmoid(-1)

1
1 + e−7

1
1 + e1

MLP components
Loss function

Loss function review:

• Loss function is a measure of how bad the model performed

• Compares model output to ground truth labels (in a supervised setting)

• Goal of training ML models: minimize the loss function

MLP components
Loss function

Mean Square Error Loss:
Measures the variance of model output
against target.

Ideal for regression settings

𝒥(θ) =
1
2

m

∑
i

(yi − ti)2

Cross Entropy Loss:
Measures the error of a model given the output
is between 0-1

Stronger gradients as predicted probability

𝒥(θ) = −
m

∑
i

ti log(yi) + (1 − ti)log(1 − yi)

Multilayer Perceptron

• Each layer computes a function, so the network computes a
composition of functions.

• Neural networks provide modularity, we can implement each
layer’s computations as a black box.

y = f (L)…f (1)(x)

.

.

.

h(1) = f (1)(x)
h(2) = f (2)(h(1))

y = f (1)(h(L−1))

Abstraction

Neural networks can be seen as a way of learning features.

The goal:x1

x2

xd

z2

z1

z3

z4

y1

y2

ψ(x)

Feature learning
Multilayer Perceptron

Expressive power

• We’ve seen that there are some functions that linear classifiers can’t represent. Are deep
networks any better?

• A network composed of a sequence of linear layers can be equivalently represented with a
single linear layer

So deep linear networks are no more expressive than linear regression!

Expressive power

• Multilayer neural nets with nonlinear activation functions are universal approximations:
they can approximate any function arbitrarily well.

• This has been shown for various activation functions, even ReLU that is “almost” linear.

Limits of universality:

• You may need to represent an exponentially large network

• If you can learn any function, you’ll overfit.

Expressive power

Design a network to compute XOR

Example

Expressive power

Can you come up with a different set of weights?

Example

Learning MLPs

• We have seen that multilayer neural networks are powerful. But how can we learn them?

• Backpropagation is the central algorithm that enables that!

• It is an algorithm for computing gradients.

• Has a clever and efficient use of the chain rule for derivatives.

Backpropagation

Learning MLPs

• Gradient descent review: gradient descent updates parameters (weights) in the direction of
steepest descent.

• Weight space for an MLP: One coordinate for each weight or bias in the networks in all
layers.

• Conceptually, not any different from what we’ve seen so far, just higher dimensions

Back propagation

ℒ(w1, w2)

w1

w2

Learning MLPs

• We need to compute the partial derivative of the cost function with respect to all weights.

• We will not cover details of how back propagation is done, but we will look into an example.

Back propagation

Learning MLPs
Example: Forward pass

x

y

z

f
q

-1

2

1

3

3

Network:

Input:

Forward propagate: calculate

Backward propagate: calculate

f(x, y, z) = (x + y) × z
q = x + y; f = q × z

x = − 1, y = 2 , z = 3

q, f
∂f
∂x

,
∂f
∂y

,
∂f
∂z

Learning MLPs
Example: Backward pass

3

x

y

z

f
q

-1

2

1

3

3

∂f
∂f

= 1

∂f
∂q

=
∂(qz)

∂q
= z = 3

∂f
∂z

=
∂(qz)

∂z
= q = 1

1

Network:

Input:

f(x, y, z) = (x + y) × z
q = x + y; f = q × z

x = − 1, y = 2 , z = 3

1

Learning MLPs
Example: Backward pass

x

y

z

f
q

-1

2

1

3

3

∂f
∂x

=
∂f
∂q

∂q
∂x

= z ⋅ 1 = 3

∂f
∂y

=
∂f
∂q

∂q
∂y

= z ⋅ 1 = 3

1

Network:

Input:

f(x, y, z) = (x + y) × z
q = x + y; f = q × z

x = − 1, y = 2 , z = 3 3

1

1

1

Learning MLPs
Forward/backward pass

Learning MLPs
Practical considerations

• Training neural networks is complicated in practice!

• The landscape of deep neural network loss function is extremely complex

• Setting the learning rate is challenging

How to properly set the learning rate?

• Try different values and find what works best

• Design an adaptive learning rate that

“adapts” to the landscape

Learning MLPs

• Batch Gradient descent: Compute the gradient over the entire dataset

• Computationally expensive, and sometime impossible.

• Stochastic gradient descent: compute the gradient over a single
sample

• Fast, but stochastic and noisy

• Mini-batch Gradient descent: Computing the gradient over a mini
batch of samples)

• Smoother convergence

• Allows for larger learning rate

• Use parallel processing

Practical considerations

Learning MLPs

• L1/L2 regularization

Regularization

Learning MLPs

• Dropout

• drop a percentage of activations in layers

• Forces network not to rely on any node in particular

Regularization

Learning MLPs

• Early stopping: Terminate the gradient updates as you start overfitting.

Regularization

Conclusion
Neural networks (MLP)

• Multilayer neural networks (Multilayer perceptrons) can learn complex relationship between
its input and output, using a network of linear functions and non-linear activation functions.

• Non-linear functions are a fundamental part of MLPs that enable modelling non-linear
functions.

• We learn the optimal weights for MLPs using the backward propagation procedure.

• Talked about tips for training neural networks in practice

• Next lecture:

• Ensemble models

• Python tutorial for supervised learning

