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Unsupervised Learning vs Supervised Learning
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Example: 2D Gaussian
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Example: 2D Gaussian

Second Principle Component
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How PCA? 

Intuition: Maximizing the Variances

Source: Andrew Ng (CS229 Lecture Notes) 
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More on Co-Variance

source: Robert Collins, CSE/EE586
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PCA Summary



How many PCs



Visualization of data using t-SNE

Sana
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).



Visualization of MNIST using PCA



Visualization of MNIST using t-SNE



SNE -- Stochastic Neighboring Embedding
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SNE pitfall: Crowding problem
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t-Distributed SNE



How t-SNE? (Optional)

Gradient Descent



Breaks



UMAP: Uniform Manifold Approximation and Projection 

source: Simon Andrews

Sana
https://umap-learn.readthedocs.io/en/latest/
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UMAP is better than tSNE?
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Dimension Reduction using Deep Learning: Auto-Encoder

source: Mitesh M. Khapra
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Going Deeper: Stacked Auto-encoder



How to choose encoder/decoder

Tabular Data (e.g., clinical variables, gene expression 
profiles etc.) : Multi-layer Perceptron/Fully Connected 
Layers

Imaging Data (e.g., MRI, CT scans etc.) : Convolutional 
Neural Networks

Sequence Data (e.g., Texts, ECG etc.) : Recurrent 
Neural Networks



Multi-Modal Auto-encoder

Input 1 Input 2

Reconstructed Output 1 Reconstructed Output 2



Take-Aways

Dimension Reduction is useful for removing noise, 
visualization, reducing computational cost, data 
compression. 

PCA is a linear dimension reduction method that tries 
to maximize the variances in low-dimensional space. 

T-SNE and UMAP are non-linear visualization 
approaches that aim to preserve neighboring 
similarities. 

Deep Auto-Encoder is a non-linear representation 
learning approach that aims to reconstruct the inputs. 


