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Unsupervised Learning vs Supervised Learning
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Unsupervised Learning vs Supervised Learning

Supervised Learning
(Classification Algorithm)

Unsupervised Learning
(Clustering Algorithm)
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Unsupervised Learning vs Supervised Learning

Classification Clustering
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Unsupervised Learning vs Supervised Learning
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Motivating Examples of Unsupervised Learning

e Some examples of situations where you would use unsupervised
learning;:

» You want to understand how a scientific field has changed over
time. You want to take a large database of papers and model how
the distribution of topics changes from year to year. But what are
the topics?

» You are a biologist studying animal behaviour, so you want to infer
a high-level description of their behaviour from video. You don’t
know the set of behaviour ahead of time.

» You want to reduce your energy consumption, so you take a time
series of your energy consumption over time, and try to break it
down into separate components (when refrigerator, washing
machine, etc. were operating or not).

e Common theme: you have some data, and you want to infer the
structure underlying the data.

@ This structure is latent, which means it is not observed.



Clustering: Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

datapoints.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Source: CMU course CS 10-601B Machine Learning



Clustering: Applications

* Cluster news articles or web pages or search results by topic.

e (Cluster protein sequences by function or genes according to expression
profile. : .
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What is a good clustering?

Question: Which of these partitions is “better’’?
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Clustering: Distance Measures

Definition: Let O, and O, be two objects from the

universe of possible objects. The distance (dissimilarity)
between O, and O, is a real number denoted by D(O,,0,)
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Clustering: Distance Measures

genel gene2

v 4

Inside these black boxes:

some function on two variables
(might be simple or very
complex)

|
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A few examples: d(x,y) = Z(xi —y.)
* Euclidian distance ; * Similarity rather than distance

¢ Can determine similar trends
* Correlation coefficient
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s(x,y) =1
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Desirable Properties of Distance Measures

* Scalability (in terms of both time and space)
» Ability to deal with different data types

* Minimal requirements for domain knowledge to
determine input parameters

* Interpretability and usability
Optional

- Incorporation of user-specified constraints

Source: CMU course CS 10-601B Machine Learning



Two Types of Clustering

* Partitional algorithms: Construct various partitions and then

evaluate them by some criterion
* Hierarchical algorithms: Create a hierarchical decomposition of

the set of objects using some criterion (focus of this class)

Bottom up or top down Top down

Hierarchical Partitional

Source: CMU course CS 10-601B Machine Learning



(How to) Hierarchical Clustering

The number of dendrograms with n Bottom-Up (agglomerative): Starting
leafs = (2n -3)!/[(2" ) (n -2)!] with each item in its own cluster, find

the best pair to merge into a new cluster.
Number Number of Possible

of Leafs  Dendrograms Repeat until all clusters are fused
2 1 together.

3 3

4 15

5 105

10 34,459,425

Source: CMU course CS 10-601B Machine Learning



(How to) Hierarchical Clustering
We begin with a distance

matrix which contains the
distances between every pair
of objects in our database.
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(How to) Hierarchical Clustering

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge into
a new cluster. Repeat until all clusters
are fused together.
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(How to) Hierarchical Clustering
Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge into
a new cluster. Repeat until all clusters
are fused together.
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(How to) Hierarchical Clustering
Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge into
a new cluster. Repeat until all clusters
are fused together.
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(How to) Hierarchical Clustering

Bottom-Up (agglomerative):
Starting with each item in its own
cluster, find the best pair to merge into al %
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Computing distance between clusters:
Single Link

» cluster distance = distance of two closest
members 1n each class

- Potentially
long and skinny

. clusters
o TN >e

Source: CMU course CS 10-601B Machine Learning



Computing distance between clusters:
Complete Link

» cluster distance = distance of two farthest
members

+ tight clusters

Source: CMU course CS 10-601B Machine Learning



Computing distance between clusters:
Average Link

* cluster distance = average distance of all
pairs

the most widely
used measure

Robust against
noise

Source: CMU course CS 10-601B Machine Learning



Example: Single Link
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Example: Single Link

L& 8 & 9 12 3 4 5
10 1,2)[0
212 0 ‘ 313 0

> j@ 8 O 4109 7 0
4010 9 7 0 sle s 40
509 854 0

d(l,2),3 = min{dl,3’ d2,3} = min{6,3} =3
d, . =min{d, ,.d,,} =min{109} =9
a'(l,z),5 = rnin{a’L5 ,d, s} = min{9,8} =8

Source: CMU course CS 10-601B Machine Learning




Example: Single Link
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d 53,4 =min{d, , ,,d; ,} =min{9,7} =7
dp3s =min{d, , s,d; ;} =min{8,5} =5
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Example: Single Link

;(g 0 1.2) 0 1,2.3)[0

306 3 0 ‘ 3130 4 (70
419 7 0

4010 9 7 0 sls 5 40 51540

509 8 5 4 0]

d(1,2,3),(4,5) = ml11{511(1,2,3),4 9d(1,2,3),5 }=35

Source: CMU course CS 10-601B Machine Learning



Summary: Hierarchical Clustering

* No need to specify the number of clusters in
advance.

 Hierarchical structure maps nicely onto human
intuition for some domains

* They do not scale well: time complexity of at least
O(n?), where n is the number of total objects.

» Like any heuristic search algorithms, local optima
are a problem.

* Interpretation of results is (very) subjective.

Source: CMU course CS 10-601B Machine Learning
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In some cases we can determine the “correct” number of clusters.

How many clusters?

However, things are rarely this clear cut, unfortunately.
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How many clusters?

The single isolated branch is suggestive of a

data point that is very different to all others
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Hierarchical Clustering for RNA-seq data

* Microarrays measures the activities of all
genes in different conditions

* Clustering genes can help determine new
functions for unknown genes

Source: CMU course CS 10-601B Machine Learning
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K-means

* Nonhierarchical, each instance 1s placed in
exactly one of K non-overlapping clusters.

* Since the output is only one set of clusters the
user has to specify the desired number of
clusters K.
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K-means : Setup

Assume that the data points {x(l), o, xN )} live in an Euclidean space,
ie., x(™ e RP,

Assume that each data point belongs to one of K clusters

Assume that the data points from same cluster are similar, i.e., close in
Euclidean distance.

How can we identify those clusters and the data points that belong to
each cluster?



K-means : Objectives
Let’s formulate this as an optimization problem

@ K-means Objective:
Find cluster centres {my}/_; and assignments {r(™}~_, to minimize the
sum of squared distances of data points {x(™} to their assigned cluster
centres

» Data sample n = 1,.., N: x(™) € RP (observed),

» Cluster centre k =1, .., K: my € RP (not observed),

» Responsibilities: Cluster assignment for sample n:
r(") € RX 1-of-K encoding (not observed)

@ Mathematically:

min J ({mk}, {r(”)}) min Z Zr( ) Hmk _ X(n)

{my},{r(™} {mp},{r(™}
where r( ") = ]I{x(”) is assigned to cluster k}, e.g.,
r(®) = [o 1,...,0]T.

@ Finding an optlmal solution is an NP-hard problem!



K-means : Optimization

e Optimization problem:

i 3 3l e

{mk}7{r(n)} =1 k—

g

distance between x(1)
and its assigned cluster centre

e Since r,(cn) = I{x(™ is assigned to cluster k} (e.g.,

r(®=[0,...,1,...,0] "), the inner sum is over K terms but only
one of them is non-zero.

o For example, if data point x(™ is assigned to cluster k = 3, then
=1[0,0,1,0,...] and

K
Z Tz(cn) Hmk —x(® i
k=1

-



K-means : Optimization

Optimization problem:

2

N K
min Z Z rfﬁn) Hmk — x™)

{mk}7{r(n)} n=1 k=1

@ Problem is hard when minimizing jointly over the parameters
{mk}a {r(n)}

@ But if we fix one and minimize over the other, then it becomes easy.

@ Doesn’t guarantee the same solution!



K-means : Optimization

Optimization problem:

N K
min ZZT,(?)Hmk —x™)||?

{mk}’{r(n)} n=1 k=1

@ Note:

» If we fix the centres {my}, we can easily find the optimal
assignments {r(™} for each sample n

2
min (™ Hmk — x(”)H .
k
r(n)

» Assign each point to the cluster with the nearest centre

) — 1 if k = argmin; ||x™ — m;||?
k 0 otherwise
» E.g. if x(™ is assigned to cluster k,

r™ =10,0,..,1,...,0] "

[ S/

v~

Only k-th entry is 1



K-means : Optimization

o If we fix the assignments {r(")}, then we can easily find optimal centres
{my}

» Set each cluster’s centre to the average of its assigned data points:
Fori=1,2,...,. K

N K
=y 2 2= e x|
n=1k=1

(n) o (n)
n n n?" X
:227”1( - x™) = mz=2’—(n)
n=1 Zn ]

@ Let’s alternate between minimizing J({my}, {r(™}) with respect to
{m;} and {r(™}

@ This is called alternating minimization.



K-means : Optimization

High level overview of algorithm:

@ Initialization: randomly initialize cluster centres
@ The algorithm iteratively alternates between two steps:

» Assignment step: Assign each data point to the closest cluster
» Refitting step: Move each cluster centre to the mean of the data
assigned to it

e  Assignments ° Refitted
. . . ® means
1/ o
0/ [ ]
/. ¢
* ] O\. * o . °0
\ / \. [ )




K-means : Example
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Simple demo: http://syskall.com/kmeans. js/




K-means : Example

Kmeans Iteration 1

15 A

10 A




K-means : Algorithms

@ Initialization: Set K cluster means my, ..., mg to random values
@ Repeat until convergence (until assignments do not change):

> Assignment: Optimize J w.r.t. {r}: Each data point x(™ assigned
to nearest centre

k™ = arg rr}gin ||my, — x (™) |2

and Responsibilities (1-hot or 1-of-K encoding)

"";(gn) _ ]I{l::(n) =k} for k=1,.,K

» Refitting: Optimize J w.r.t. {m}: Each centre is set to mean of
data assigned to it

T

m; = =
et




K-means : Applications

K=3 K=10 Original image

K=2

Figure from Bishop

@ Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

@ Run k-means, replace each pixel by its cluster centre



K-means : Applications

@ Given image, construct “dataset” of pixels, represented by their RGB
pixel intensities and grid locations

@ Run k-means (with some modifications) to get superpixels



K-means : Potential Issues

@ Why does update set mg to mean of assigned points?
@ What if we used a different distance measure?

@ How can we choose the best distance?

@ How to choose K7

@ Will it converge?

Hard cases — unequal spreads, non-circular spreads, in-between points



K-means : Potential Issues

K-means algorithm reduces the cost at each iteration.

» Whenever an assignment is changed, the sum squared distances J of
data points from their assigned cluster centres is reduced.
» Whenever a cluster centre is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

This will always happen after a finite number of iterations, since the
number of possible cluster assignments is finite

1000 Q

J

500

(]
P Dyl

0

1 2 3 4
K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.



K-means : Potential Issues

@ The objective J is non-convex (so

coordinate descent on J is not A bad local optimum
guaranteed to converge to the global
minimum) 5 @

@ There is nothing to prevent k-means o :g:
getting stuck at local minima. & o

@ We could try many random starting

points



Clustering: A generative view

@ Next: probabilistic formulation of clustering

@ We need a sensible measure of what it means to cluster the data well

» This makes it possible to judge different methods
» It may help us decide on the number of clusters

@ An obvious approach is to imagine that the data was produced by a
generative model

» Then we adjust the model parameters using maximum likelihood
i.e. to maximize the probability that it would produce exactly the
data we observed



Clustering: A generative view

e We’'ll be working with the following generative model for data D
e Assume a datapoint x is generated as follows:

» Choose a cluster z from {1,..., K} such that p(z = k) = 7y,
» Given z, sample x from a Gaussian distribution N (x|w,,I)

e Can also be written:
p(z=k)=mg
p(x|z = k) = N(x|py, I)



Clustering: A generative view

e This defines joint distribution p(z,x) = p(z)p(x|z) with
parameters {mg, py } X

e The marginal of x is given by p(x) = ), p(z,x)

e p(z = k|x) can be computed using Bayes rule

p(x|z=k)p(z = k)
p(x) '

p(z = klx) =

This tells us the probability that x comes from the k' cluster.



Clustering: A generative view

e 500 points drawn from a mixture of 3 Gaussians.

0.5

a) Samples from p(x | z) b) Samples from the marginal p(x) c) Responsibilities p(z | x)



Clustering: A generative view

o How should we choose the parameters {mg, p;}o_,?

e Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

@ We don’t observe the cluster assignments z, we only see the data x

o Given data D = {x(™1}_. choose parameters to maximize:

n=1»

N
logp(D) = ) _logp(x(™)

e We can find p(x) by marginalizing out z:

K
=3 p(e = Zp p(x|z = k)
k=1



Gaussian Mixture Model (GMM)

What is p(x)?

p(x) =Y p(z=k)p(xlz = k) = Y mN (x|py, T)
k=1 k=1

@ This distribution is an example of a Gaussian Mixture Model (GMM),
and 7, are known as the mixing coefficients

@ In general, we would have different covariance for each cluster, i.e.,
p(x|z=k) = N(x|py, Xi). For this lecture, we assume ¥j =1 for
simplicity.

@ If we allow arbitrary covariance matrices, GMMs are universal
approximators of densities (if you have enough Gaussians). Even
diagonal GMMs are universal approximators.



Gaussian Mixture Model (GMM)

o If you fit one Gaussian distribution to data:

Probability
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@ Now, we are trying to fit a GMM with K = 2:

Probability
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Mixture Model
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— comp 1
--- comp 2
== mixture

\
i
\
\
i
\
\
v

i

0

50

100

[Slide credit: K. Kutulakos]

— Model Fit

150 200 250



Gaussian Mixture Model (GMM)

02 03 04 05 06 07 08 09




(How to) Gaussian Mixture Model (GMM)

Optional!
©

Maximum likelihood objective:
N K
log p(D) = Z log p(x(™) = Z log (Z N (x™ |y, I))
n=1 k=1

@ How would you optimize this w.r.t. parameters {m, s }7

» No closed-form solution when we set derivatives to 0
» Difficult because sum inside the log

@ One option: gradient ascent. Can we do better?

@ Can we have a closed-form update?



(How to) Gaussian Mixture Model (GMM)

Optional!
©

o Observation: if we knew 2(™ for every x(™, (i.e. our dataset was
Deomplete = 1(2(™,x(™)}_) the maximum likelihood problem is easy:

N
1ng(,l)complete) — Z logp(z(n)a X(n))

n=1

N
= 3" logp(x™]2™) + log p(=")

n—

N K
= Z Z]I{z(”) = k} (log/\f(x(”)|uk, I) + log wk)

k=1

[y

[t

n—



(How to) Gaussian Mixture Model (GMM)

Optional!
©

N

K
logp complete Z Z {z(n) — k} (logN(X(n)|“k) I) + log 7Tk)
n=1 k=1

@ We have been optimizing something similar for Naive bayes classifiers

@ By maximizing log p(Dcomplete); We would get this:

N
150 — kY™
n, = Z"ZZ{, & S = class means
Zn:l H{Z(n) = k}
1
Tl = N Z I{z(™ = k} = class proportions

n=1



(How to) Gaussian Mixture Model (GMM)

Optional!
©

@ We haven’t observed the cluster assignments z(™, but we can compute
p(2(™|x(™) using Bayes rule

@ Conditional probability (using Bayes rule) of z given x

p(z = k)p(x|z = k)
p(x)
p(z = k)p(x|z = k)
S p(z = 5)p(x|z = j)
WkN(XWka I)
Yoimy TN (x|, 1)

p(z =klx) =




(How to) Gaussian Mixture Model (GMM)

Optional!
©

N K
log P(Deomplete) Z {z““—k} (log N (x™ |y, T) + log )

We don’t know the cluster assignments I{z(™ =k} (they are our latent

variables), but we know their expectation

If we plug in r{"™ = p(z(”) = k|x(™) for I{z(") = k}, we get:

Z " (log N (x™ |y, T) + log )

This is still easy to optimize! Solution is similar to what we have seen:

N n n N n
Zn:l ’f’( ) ( ) A Zn:lrlg: )

St S
(n) _ _ meN& D)
ZJK:1 N (x(™) |P'j 1)

P, =

as fixed.

Note: this only works if we treat 7



(How to) Gaussian Mixture Model (GMM)

Optional!
©

@ This motivates the Expectation-Maximization algorithm, whicl
alternates between two steps:

1. E-step: Compute the posterior probabilities ’r',(cn) = p(z™ = k|x™)
given our current model, i.e., how much do we think a cluster is
responsible for generating a datapoint.

2. M-step: Use the equations on the last slide to update the
parameters, assuming r,(c") are held fixed — change the parameters of
each Gaussian to maximize the probability that it would generate
the data it is currently responsible for.
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(How to) Gaussian Mixture Model (GMM)

Optional!
©

@ Initialize the means fi;, and mixing coefficients 7
@ Iterate until convergence:

» E-step: Evaluate the responsibilities r,(c") given current parameters

N x|, ) Feexp{—3lIx™ — @, ]*}
K 4 ~ - K A ~
Zj:l WJN(X(n)“J’jaI) Zj:l 5 exp{—%”x(”) - I~"j||2}

T,I(Cn) _ p(z(") =k|x(n)) —

» M-step: Re-estimate the parameters given current responsibilities

1 XN
~ _ (n)_(n)
= — E r X
Mg N 2 k

N
. N, . n
T = Wk with N, = E 1",(C )

n=1

» Evaluate log likelihood and check for convergence

N K
logp(D) = ) _ log <Z TN (X(n)lﬂml))
k=1

n=1



Gaussian Mixture Model (GMM) : Example
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Gaussian Mixture Model (GMM) : Example
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GMM vs K-means

e The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster centre to the average of the data
assigned to it

e The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.



GMM vs K-means

Convergence:
K-Means tends to converge much faster than a GMM

Speed:
Each iteration of K-Means is computationally less intensive than
each iteration of a GMM

Initialization:

To initialize a GMM, we typically first run K-Means and use the
resulting cluster centers as the means of the Gaussian components

Output:

A GMM yields a probability distribution over the cluster assignment
for each point; whereas K-Means gives a single hard assignment



